The Science Behind Foldit
Foldit is a revolutionary new computer game enabling you to contribute to important scientific research. This page describes the science behind Foldit and how your playing can help.
Page Contents:
What is protein folding?![]() What are amino acids? Amino acids are small molecules made up of atoms of carbon, oxygen, nitrogen, sulfur, and hydrogen. To make a protein, the amino acids are joined in an unbranched chain, like a line of people holding hands. Just as the line of people has their legs and feet "hanging" off the chain, each amino acid has a small group of atoms (called a sidechain) sticking off the main chain (backbone) that connects them all together. There are 20 different kinds of amino acids, which differ from one another based on what atoms are in their sidechains. These 20 amino acids fall into different groups based on their chemical properties: acidic or alkaline, hydrophilic (water-loving) or hydrophobic (greasy). ![]() Why is shape important? This structure specifies the function of the protein. For example, a protein that breaks down glucose so the cell can use the energy stored in the sugar will have a shape that recognizes the glucose and binds to it (like a lock and key) and chemically reactive amino acids that will react with the glucose and break it down to release the energy. What do proteins do? Proteins are involved in almost all of the processes going on inside your body: they break down food to power your muscles, send signals through your brain that control the body, and transport nutrients through your blood. Many proteins act as enzymes, meaning they catalyze (speed up) chemical reactions that wouldn't take place otherwise. But other proteins power muscle contractions, or act as chemical messages inside the body, or hundreds of other things. Here's a small sample of what proteins do:
Proteins are present in all living things, even plants, bacteria, and viruses. Some organisms have proteins that give them their special characteristics:
You can find more information on the rules of protein folding in our FAQ.
Why is this game important?
What big problems is this game tackling?
How does my game playing contribute to curing diseases?
With all the things proteins do to keep our bodies functioning and healthy, they can be involved in disease in many different ways. The more we know about how certain proteins fold, the better new proteins we can design to combat the disease-related proteins and cure the diseases. Below, we list three diseases that represent different ways that proteins can be involved in disease.
![]()
What other good stuff am I contributing to by playing?
Proteins are found in all living things, including plants. Certain types of plants are grown and converted to biofuel, but the conversion process is not as fast and efficient as it could be. A critical step in turning plants into fuel is breaking down the plant material, which is currently done by microbial enzymes (proteins) called "cellulases". Perhaps we can find new proteins to do it better.
Can humans really help computers fold proteins?
We’re collecting data to find out if humans' pattern-recognition and puzzle-solving abilities make them more efficient than existing computer programs at pattern-folding tasks. If this turns out to be true, we can then teach human strategies to computers and fold proteins faster than ever!
You can find more information about the goals of the project in our FAQ.
Foldit Scientific Publications
Predicting protein structures with a multiplayer online game. Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee, Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović and Foldit players. In Nature 466, 756-760 (2010).
The challenge of designing scientific discovery games. Seth Cooper, Adrien Treuille, Janos Barbero, Andrew Leaver-Fay, Kathleen Tuite, Firas Khatib, Alex Cho Snyder, Michael Beenen, David Salesin, David Baker, Zoran Popović and Foldit players. In Foundations of Digital Games, 2010.
Analysis of social gameplay macros in the Foldit cookbook. Seth Cooper, Firas Khatib, Ilya Makedon, Hao Lu, Janos Barbero, David Baker, James Fogarty, Zoran Popović and Foldit Players. In Foundations of Digital Games, 2011.
Crystal structure of a monomeric retroviral protease solved by protein folding game players. Firas Khatib, Frank DiMaio, Foldit Contenders Group, Foldit Void Crushers Group, Seth Cooper, Maciej Kazmierczyk, Miroslaw Gilski, Szymon Krzywda, Helena Zábranská, Iva Pichová, James Thompson, Zoran Popović, Mariusz Jaskolski and David Baker. In Nature Structural and Molecular Biology 18, 1175–1177 (2011).
High-resolution structure of a retroviral protease folded as a monomer. Miroslaw Gilski, Maciej Kazmierczyk, Szymon Krzywda, Helena Zábranská, Seth Cooper, Zoran Popović, Firas Khatib, Frank DiMaio, James Thompson, David Baker, Iva Pichová and Mariusz Jaskolskia. In Acta Crystallographica D67, 907-914 (2011).
Algorithm discovery by protein folding game players. Firas Khatib, Seth Cooper, Michael D. Tyka, Kefan Xu, Ilya Makedon, Zoran Popović, David Baker, and Foldit Players. In Proceedings of the National Academy of Sciences (2011).
Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Christopher B Eiben, Justin B Siegel, Jacob B Bale, Seth Cooper, Firas Khatib, Betty W Shen, Foldit Players, Barry L Stoddard, Zoran Popović and David Baker. In Nature Biotechnology (2012).
News Articles about Foldit
News Articles about Rosetta
Rosetta@Home Scree |
mercoledì 7 maggio 2014
read key : intuito collettivo: molto utile per la scienza
Iscriviti a:
Commenti sul post (Atom)
Nessun commento:
Posta un commento